Scilab Program - forward difference formula - IProgramX

Program

function[]=forward(X,Y,x0)
    n=length(X)
    h=X(2)-X(1);
    for i=1:n
        Z(i)=Y(i);
        D(i,1)=Y(i);
    end
    for i=1:n-1
        for j=1:n-i
            d(i,j)=Z(j+1)-Z(j);
            D(i,1)=d(i,j);
        end
        for k=1:n-i
            Z(k)=d(i,k)
            end
    end
    printf('difference table is')
    disp(D)
    y_x=Y(1);
    p=(x0-X(1))/h;
    for i=1:n-1
        pp=1;
        for j=1:i
            pp=pp*(p-(j-1));
         
        end
        y_x=y_x+((pp*d(i,i))/factorial(i))
    end
    printf('value of function at %.4f is %.4f',x0,y_x)
    endfunction
 
Output:

-->X=(100:50:300);

-->Y=[958 917 865 799 712];

-->forward(X,Y,125)
difference table is
  - 87.
  - 21.
  - 7.  
  - 4.  
    712.
value of function at 125.0000 is 939.2500 

Post a Comment

15 Comments

  1. Import numpy as np
    Import pandas as pd
    From sklearn.model_selection import train_test_split
    From sklearn.linear_model import LinearRegression

    # Create the Position_Salaries dataset
    Data = {‘Position’: [‘CEO’, ‘charman’, ‘director’, ‘Senior Manager’, ‘Junior Manager’, ‘Intern’],
    ‘Level’: [1, 2, 3, 4, 5, 6],
    ‘Salary’: [50000, 80000, 110000, 150000, 200000, 250000]}
    Df = pd.DataFrame(data)

    # Identify the independent and target variables
    X = df.iloc[:, 1:2].values
    Y = df.iloc[:, 2].values

    # Split the variables into training and testing sets with a 7:3 ratio
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

    # Print the training and testing sets
    Print(“X_train:\n”, X_train)
    Print(“y_train:\n”, y_train)
    Print(“X_test:\n”, X_test)
    Print(“y_test:\n”, y_test)

    # Build a simple linear regression model
    Regressor = LinearRegression()
    Regressor.fit(X_train, y_train)

    # Print the coefficients and intercept
    Print(“Coefficients:”, regressor.coef_)
    Print(“Intercept:”, regressor.intercept_)

    ReplyDelete
  2. SLIP 2

    Import numpy as np
    Import pandas as pd
    From sklearn.model_selection import train_test_split
    From sklearn.linear_model import LinearRegression

    # Create the Salary dataset
    Data = {‘YearsExperience’: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
    ‘Salary’: [50000, 60000, 70000, 80000, 90000, 100000, 110000, 120000, 130000, 140000]}
    Df = pd.DataFrame(data)

    # Identify the independent and target variables
    X = df.iloc[:, 0:1].values
    Y = df.iloc[:, 1].values

    # Split the variables into training and testing sets
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

    # Print the training and testing sets
    Print(“X_train:\n”, X_train)
    Print(“y_train:\n”, y_train)
    Print(“X_test:\n”, X_test)
    Print(“y_test:\n”, y_test)

    # Build a simple linear regression model
    Regressor = LinearRegression()
    Regressor.fit(X_train, y_train)

    # Print the coefficients and intercept
    Print(“Coefficients:”, regressor.coef_)
    Print(“Intercept:”, regressor.intercept_)

    ReplyDelete
  3. SLIP 3



    Import pandas as pd

    Data = {‘User ID’: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
    ‘Gender’: [‘Male’, ‘Male’, ‘Female’, ‘Female’, ‘Male’, ‘Male’, ‘Female’, ‘Female’, ‘Male’, ‘Female’],
    ‘Age’: [19, 35, 26, 27, 19, 27, 32, 25, 33, 45],
    ‘Estimated Salary’: [19000, 20000, 43000, 57000, 76000, 58000, 82000, 32000, 69000, 65000],
    ‘Purchased’: [0, 0, 0, 1, 1, 0, 1, 0, 1, 1]}
    Df = pd.DataFrame(data)

    From sklearn.model_selection import train_test_split

    X = df.iloc[:, 1:4].values
    Y = df.iloc[:, 4].values

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
    From sklearn.linear_model import LogisticRegression

    Lr=LogisticRegression(random_state=0)
    Lr.fit(X_train, y_train)

    # Predict a single observation
    Observation = [[0, 30, 87000]]
    Prediction = Lr.predict(observation)
    Print(prediction)

    # Predict multiple observations
    Observations = [[0, 30, 87000], [1, 50, 45000], [1, 22, 30000]]
    Predictions = Lr.predict(observations)
    Print(predictions)

    ReplyDelete
  4. SLIP 4


    Import pandas as pd
    Import random
    From sklearn.linear_model import LinearRegression

    # create the dataset
    Fish_species = [‘Tuna’, ‘Salmon’, ‘Trout’, ‘Bass’, ‘Sardine’, ‘Cod’, ‘Mackerel’]
    Weights = []

    For i in range(50):
    Fish_weight = []
    For j in range(7):
    Weight = random.randint(1, 20)
    Fish_weight.append(weight)
    Weights.append(fish_weight)

    Df = pd.DataFrame(weights, columns=fish_species)

    # create the linear regression model
    X = df.iloc[:, :-1] # independent variables
    Y = df.iloc[:, -1] # target variable

    Model = LinearRegression()
    Model.fit(X, y)

    # predict the weight of a new fish species
    New_fish = [[10, 12, 15, 7, 4, 8]] # example input
    Predicted_weight = model.predict(new_fish)
    Print(“Predicted weight:”, predicted_weight)

    ReplyDelete
  5. SLIP 5


    Import pandas as pd
    From sklearn.datasets import load_iris
    From sklearn.linear_model import LogisticRegression
    From sklearn.model_selection import train_test_split
    From sklearn.metrics import accuracy_score

    # load the iris dataset
    Iris = load_iris()

    # create a dataframe from the dataset
    Df = pd.DataFrame(iris.data, columns=iris.feature_names)
    Df[‘target’] = iris.target

    # view basic statistical details of the different species
    Print(“Statistical details of Iris-setosa:”)
    Print(df[df[‘target’]==0].describe())

    Print(“Statistical details of Iris-versicolor:”)
    Print(df[df[‘target’]==1].describe())

    Print(“Statistical details of Iris-virginica:”)
    Print(df[df[‘target’]==2].describe())

    # split the data into training and testing sets
    X = df.iloc[:,:-1]
    Y = df.iloc[:, -1]
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

    # fit a logistic regression model
    Logreg = LogisticRegression()
    Logreg.fit(X_train, y_train)

    # make predictions on the test set
    Y_pred = logreg.predict(X_test)

    # calculate the accuracy of the model
    Accuracy = accuracy_score(y_test, y_pred)
    Print(“Accuracy of the logistic regression model:”, accuracy)

    ReplyDelete
  6. SLIP 6



    Import pandas as pd
    From mlxtend.preprocessing import TransactionEncoder
    From mlxtend.frequent_patterns import apriori, association_rules

    # create the dataset
    TID = {1:[“bread”,”milk”],2:[“bread”,”diaper”,”beer”,”eggs”],3:[“milk”,”diaper”,”beer”,”coke”],4:[“bread”,”milk”,”diaper”,”beer”],5:[“bread”,”milk”,”diaper”,”coke”]}
    Transactions = []
    For key, value in TID.items():
    Transactions.append(value)

    # convert the categorical values into numeric format
    Te = TransactionEncoder()
    Te_ary = te.fit_transform(transactions)
    Df = pd.DataFrame(te_ary, columns=te.columns_)

    # apply the apriori algorithm with different min_sup values
    Min_sup_values = [0.2, 0.4, 0.6]
    For min_sup in min_sup_values:
    Frequent_itemsets = apriori(df, min_support=min_sup, use_colnames=True)
    Rules = association_rules(frequent_itemsets, metric=”confidence”, min_threshold=0.7)
    Print(“Min_sup:”, min_sup)
    Print(“Frequent Itemsets:”)
    Print(frequent_itemsets)
    Print(“Association Rules:”)
    Print(rules)

    ReplyDelete
  7. SLIP 7



    Import pandas as pd
    From mlxtend.preprocessing import TransactionEncoder
    From mlxtend.frequent_patterns import apriori, association_rules

    # read the dataset
    Df = pd.read_csv(‘Market_Basket_Optimisation.csv’, header=None)

    # drop null values
    Df.dropna(inplace=True)

    # convert categorical values to numeric using one-hot encoding
    Te = TransactionEncoder()
    Te_ary = te.fit(df.values).transform(df.values)
    Df = pd.DataFrame(te_ary, columns=te.columns_)

    # generate frequent itemsets using apriori algorithm
    Frequent_itemsets = apriori(df, min_support=0.01, use_colnames=True)

    # generate association rules from frequent itemsets
    Rules = association_rules(frequent_itemsets, metric=”lift”, min_threshold=1)

    # display information
    Print(“Original Dataset:\n”)
    Print(df.head())
    Print(“\nFrequent Itemsets:\n”)
    Print(frequent_itemsets)
    Print(“\nAssociation Rules:\n”)
    Print(rules)

    ReplyDelete
  8. SLIP 8



    Import pandas as pd
    From mlxtend.preprocessing import TransactionEncoder
    From mlxtend.frequent_patterns import apriori, association_rules

    # Load the dataset
    Df = pd.read_csv(‘market_basket.csv’)

    # Drop any rows with null values
    Df.dropna(inplace=True)

    # Convert categorical values to numeric format
    Te = TransactionEncoder()
    Te_ary = te.fit(df.values).transform(df.values)
    Df = pd.DataFrame(te_ary, columns=te.columns_)

    # Generate frequent itemsets
    Frequent_itemsets = apriori(df, min_support=0.01, use_colnames=True)

    # Generate association rules
    Rules = association_rules(frequent_itemsets, metric=”lift”, min_threshold=1)

    # Display information about the dataset
    Print(“Dataset information:”)
    Print(df.info())

    # Display the frequent itemsets
    Print(“\nFrequent itemsets:”)
    Print(frequent_itemsets)

    # Display the association rules
    Print(“\nAssociation rules:”)
    Print(rules)

    ReplyDelete
  9. SLIP 9



    Items=[‘item1’,’item2’,’item3’,’item4’]

    Transactions = [ [‘item1’, ‘item2’, ‘item3’],
    [‘item2’, ‘item3’],
    [‘item1’, ‘item2’, ‘item4’],
    [‘item1’, ‘item4’],
    [‘item2’, ‘item3’, ‘item4’],
    [‘item1’, ‘item3’, ‘item4’],
    [‘item1’, ‘item2’],
    [‘item1’, ‘item3’],
    [‘item3’, ‘item4’],
    [‘item2’, ‘item4’]
    ]

    From mlxtend.preprocessing import TransactionEncoder
    From mlxtend.frequent_patterns import apriori, association_rules

    # Convert the transactions into a binary matrix
    Te = TransactionEncoder()
    Te_ary = te.fit_transform(transactions)

    # Convert the binary matrix into a pandas DataFrame
    Df = pd.DataFrame(te_ary, columns=te.columns_)

    # Generate frequent itemsets with a minimum support of 0.3
    Frequent_itemsets = apriori(df, min_support=0.3, use_colnames=True)

    # Generate association rules with a minimum confidence of 0.7
    Association_rules = association_rules(frequent_itemsets, metric=”confidence”, min_threshold=0.7)

    # Print the frequent itemsets and association rules
    Print(frequent_itemsets)
    Print(association_rules)

    ReplyDelete
  10. SLIP 10




    Import pandas as pd
    From mlxtend.preprocessing import TransactionEncoder
    From mlxtend.frequent_patterns import apriori, association_rules

    # Create the dataset
    Dataset = {
    1: [“eggs”,”milk”,”bread”],
    2: [“eggs”,”apple”],
    3: [“milk”,”bread”],
    4: [“apple”,”milk”],
    5: [“milk”,”apple”,”bread”]
    }

    # Convert categorical values into numeric format
    Te = TransactionEncoder()
    Te_ary = te.fit(dataset.values()).transform(dataset.values())
    Df = pd.DataFrame(te_ary, columns=te.columns_)

    # Apply Apriori algorithm to generate frequent itemsets and association rules
    Min_sup = 0.4
    Frequent_itemsets = apriori(df, min_support=min_sup, use_colnames=True)
    Association_rules = association_rules(frequent_itemsets, metric=”confidence”, min_threshold=0.6)

    # Print the frequent itemsets and association rules
    Print(“Frequent Itemsets:\n”, frequent_itemsets)
    Print(“\nAssociation Rules:\n”, association_rules)

    ReplyDelete
  11. SLIP 11



    Import pandas as pd
    From mlxtend.preprocessing import TransactionEncoder
    From mlxtend.frequent_patterns import apriori, association_rules

    # Creating the dataset
    Dataset = [[‘butter’, ‘bread’, ‘milk’], [‘butter’, ‘flour’, ‘milk’, ‘sugar’], [‘butter’, ‘eggs’, ‘milk’, ‘salt’], [‘eggs’], [‘butter’, ‘flour’, ‘milk’, ‘salt’]]
    Df = pd.DataFrame(dataset)

    # Converting the categorical values into numeric format
    Te = TransactionEncoder()
    Te_ary = te.fit(dataset).transform(dataset)
    Df = pd.DataFrame(te_ary, columns=te.columns_)

    # Generating frequent itemsets using Apriori algorithm with different min_sup values
    Min_sup_values = [0.4, 0.3, 0.2]
    For min_sup in min_sup_values:
    Frequent_itemsets = apriori(df, min_support=min_sup, use_colnames=True)
    Print(“Frequent Itemsets with minimum support of”, min_sup)
    Print(frequent_itemsets)

    # Generating association rules
    Rules = association_rules(frequent_itemsets, metric=”confidence”, min_threshold=0.7)
    Print(“Association Rules with minimum support of”, min_sup)
    Print(rules)

    ReplyDelete
  12. SLIP 12



    Import numpy as np
    Import pandas as pd
    From sklearn.linear_model import LinearRegression
    From sklearn.model_selection import train_test_split

    # Create a random dataset with 10 samples
    Heights = np.random.normal(170, 10, 10)
    Weights = np.random.normal(70, 5, 10)

    # Combine the two arrays into a single dataset
    Dataset = pd.DataFrame({‘Height’: heights, ‘Weight’: weights})

    # Split the dataset into training and testing sets
    X_train, X_test, y_train, y_test = train_test_split(dataset[‘Height’], dataset[‘Weight’], test_size=0.2, random_state=42)

    # Create a Linear Regression model and fit it to the training data
    Lr_model = LinearRegression()
    Lr_model.fit(X_train.values.reshape(-1, 1), y_train)

    # Print the model coefficients
    Print(‘Model Coefficients:’, lr_model.coef_)

    # Predict the weights for the test data and print the predictions
    Y_pred = lr_model.predict(X_test.values.reshape(-1, 1))
    Print(‘Predictions:’, y_pred)

    ReplyDelete
  13. SLIP 13

    Import pandas as pd
    Import numpy as np
    From sklearn.model_selection import train_test_split
    From sklearn.linear_model import LinearRegression

    # Load the dataset

    url = https://archive.ics.uci.edu/ml/machine-learning-databases/nursery/nursery.data
    names = [‘parents’, ‘has_nurs’, ‘form’, ‘children’, ‘housing’, ‘finance’, ‘social’, ‘health’, ‘class’]
    dataset = pd.read_csv(url, names=names)

    # Identify independent and target variables
    X = dataset.drop(‘class’, axis=1)
    Y = dataset[‘class’]

    # Convert categorical variables into numerical variables using one-hot encoding
    X = pd.get_dummies(X)

    # Split into training and testing sets
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

    # Build a linear regression model
    Model = LinearRegression()
    Model.fit(X_train, y_train)

    # Print the coefficients of the model
    Print(“Intercept: “, model.intercept_)
    Print(“Coefficients: “, model.coef_)

    # Predict the target variable for the testing set
    Y_pred = model.predict(X_test)

    # Evaluate the model using Mean Squared Error (MSE)
    Mse = np.mean((y_test – y_pred) ** 2)
    Print(“MSE: “, mse)

    ReplyDelete
  14. SLIP 14




    TID={1:[“apple”,”mango”,”banana”],2=[“mango”,”banana”, “cabbage”,”carrots”],3=[“mango”,”banana”,carrots”],4=[“mango”,”carrots”]}AAAns:

    From mlxtend.preprocessing import TransactionEncoder
    From mlxtend.frequent_patterns import apriori

    # Create the dataset
    TID = {1:[“apple”,”mango”,”banana”],
    2:[“mango”,”banana”,”cabbage”,”carrots”],
    3:[“mango”,”banana”,”carrots”],
    4:[“mango”,”carrots”]}

    # Convert the categorical values into numeric format
    Te = TransactionEncoder()
    Te_ary = te.fit([TID[i] for i in TID]).transform([TID[i] for i in TID])
    Df = pd.DataFrame(te_ary, columns=te.columns_)

    # Apply the apriori algorithm with different min_sup values
    Min_sup_values = [0.25, 0.5, 0.75]
    For min_sup in min_sup_values:
    Frequent_itemsets = apriori(df, min_support=min_sup, use_colnames=True)
    Print(“Frequent itemsets with min_sup =”, min_sup)
    Print(frequent_itemsets)
    Print(“\n”)

    ReplyDelete
  15. SLIP 15



    Import pandas as pd

    # Create the dataset
    Data = {‘No’: [1, 2, 3, 4],
    ‘Company’: [‘Tata’, ‘MG’, ‘Kia’, ‘Hyundai’],
    ‘Model’: [‘Nexon’, ‘Astor’, ‘Seltos’, ‘Creta’],
    ‘Year’: [2017, 2021, 2019, 2015]}

    Df = pd.DataFrame(data)

    # Convert categorical values into numeric format
    Df[‘Company’] = pd.Categorical(df[‘Company’])
    Df[‘Model’] = pd.Categorical(df[‘Model’])

    Df[‘Company’] = df[‘Company’].cat.codes
    Df[‘Model’] = df[‘Model’].cat.codes

    Print(df)
    From mlxtend.frequent_patterns import apriori
    From mlxtend.frequent_patterns import association_rules

    # Generate frequent itemsets with min_sup = 0.5
    Frequent_itemsets = apriori(df, min_support=0.5, use_colnames=True)
    Print(frequent_itemsets)

    # Generate association rules with min_threshold = 0.7
    Association_rules = association_rules(frequent_itemsets, metric=”confidence”, min_threshold=0.7)
    Print(association_rules)

    ReplyDelete