Program
function[]=div(X,Y,x0)
n=length(X)
h=X(2)-X(1);
for i=1:n
Z(i)=Y(i);
d(i,1)=Y(i);
end
for i=1:n-1
for j=1:n-i
d(i,j)=Z(j+1)-Z(j)/(X(j+i)-X(j));
D(j,i+1)=d(i,j);
end
for k=1:n-i
Z(k)=d(i,k);
end
end
disp(D)
p=Y(1);
x=poly(0,'x')
for i=1:n-1
L=1;
for j=1:i
L=L*(x-X(j));
end
p=p+L*d(i,1);
end
disp(p,'newtons poly=')
printf('value of poly @ %.4f=%.4f',x0,horner(p,x0))
endfunction
Output
exec('C:\Users\acer\div.sce', -1)
X=[-1 1 4 6]
X =
-1. 1. 4. 6.
Y=[-4 8 -41 78]
Y =
-4. 8. -41. 78.
div(X,Y,1.1)
0. 10. -45.666667 113.75714
0. -43.666667 107.23333 0.
0. 98.5 0. 0.
newtons poly=
2 3
506.69524 -103.75714x -500.69524x +113.75714x
value of poly @ 1.1000=-61.8681
function[]=div(X,Y,x0)
n=length(X)
h=X(2)-X(1);
for i=1:n
Z(i)=Y(i);
d(i,1)=Y(i);
end
for i=1:n-1
for j=1:n-i
d(i,j)=Z(j+1)-Z(j)/(X(j+i)-X(j));
D(j,i+1)=d(i,j);
end
for k=1:n-i
Z(k)=d(i,k);
end
end
disp(D)
p=Y(1);
x=poly(0,'x')
for i=1:n-1
L=1;
for j=1:i
L=L*(x-X(j));
end
p=p+L*d(i,1);
end
disp(p,'newtons poly=')
printf('value of poly @ %.4f=%.4f',x0,horner(p,x0))
endfunction
Output
exec('C:\Users\acer\div.sce', -1)
X=[-1 1 4 6]
X =
-1. 1. 4. 6.
Y=[-4 8 -41 78]
Y =
-4. 8. -41. 78.
div(X,Y,1.1)
0. 10. -45.666667 113.75714
0. -43.666667 107.23333 0.
0. 98.5 0. 0.
newtons poly=
2 3
506.69524 -103.75714x -500.69524x +113.75714x
value of poly @ 1.1000=-61.8681
2 Comments
this code does not give correct answer
ReplyDeleteSLIP 1
ReplyDeleteimport numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
data = {'Position': ['CEO', 'charman', 'director', 'Senior Manager', 'Junior Manager', 'Intern'],
'Level': [1, 2, 3, 4, 5, 6],
' Salary': [50000, 80000, 110000, 150000, 200000, 250000]}
df = pd.DataFrame(data)
X = df.iloc[:, 1:2].values
y = df.iloc[:, 2].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
print("X_train:\n", X_train)
print("y_train:\n", y_train)
print("X_test:\n", X_test)
print("y_test:\n", y_test)
regressor = LinearRegression()
regressor.fit(X_train, y_train)
print("Coefficients:", regressor.coef_)
print("Intercept:", regressor.intercept_)